优学建筑网 加入收藏  -  设为首页
您的位置:优学建筑网 > 知识百科 > 正文

目录

1,底部剪力法的适用条件

底部剪力法的适用条件

底部剪力法也就是拟静力法。适用条件:一是房屋结构的质量和刚度沿高度分布比较均匀,二是房屋的总高度不超过40m,三是房屋结构在地震运动作用下的变形以剪切变形为主,四是房屋结构在地震运动作用下的扭转效应可忽略不计,该方法能在有限程度上反映荷载的动力特性,但不能反映各种材料自身的动力特性以及结构物之间的动力响应,更不能反映结构物之间的动力耦合关系。 但是,拟静力法的优点也很突出,它物理概念清晰,与全面考虑结构物动力相互作用的分析方法相比,计算方法较为简单,计算工作量很小、参数易于确定,并积累了丰富的使用经验,易于设计工程师所接受。但是,应该严格限定拟静力法的使用范围:它不能用于地震时土体刚度有明显降低或者产生液化的场合,而且只适用于设计加速度较小、动力相互作用不甚突出的结构抗震设计。 对于建筑结构而言,静力作用可能不会产生显著影响,结构在静力作用时基本保持弹性状态,加固与维护可能是主要考虑问题,但地震作用时由于结构自身的振动特性,可能会对其产生较大的损伤,从而对生命财产造成不可逆的损失,因此分析地震作用下结构的变形与内力就显得极为重要。

2,什么是底部剪力法

底部剪力法(拟静力法)(Equivalent Base Shear Method)

根据地震反应谱理论,以工程结构底部的总地震剪力与等效单质点的水平地震作用相等,来确定结构总地震作用的方法。

一种用静力学方法近似解决动力学问题的简易方法,它发展较早,迄今仍然被广泛使用。其基本思想是在静力计算的基础上,将地震作用简化为一个惯性力系附加在研究对象上,其核心是设计地震加速度的确定问题。
该方法能在有限程度上反映荷载的动力特性,但不能反映各种材料自身的动力特性以及结构物之间的动力响应,更不能反映结构物之间的动力耦合关系。
但是,拟静力法的优点也很突出,它物理概念清晰,与全面考虑结构物动力相互作用的分析方法相比,计算方法较为简单,计算工作量很小、参数易于确定,并积累了丰富的使用经验,易于设计工程师所接受。但是,应该严格限定拟静力法的使用范围:它不能用于地震时土体刚度有明显降低或者产生液化的场合,而且只适用于设计加速度较小、动力相互作用不甚突出的结构抗震设计。
为了克服拟静力法的上述缺陷,一些学者发展了可以部分地反映土体育结构物之间的动力耦合关系的所谓拟动力分析法。迄今为止,已经发展了不少考虑土体-结构物动力相互作用的分析方法,例如子结构法、有限元法、杂交法等。

3,简述底部剪力法和振型分解反应谱法的基本原理和步骤.

行抗震规范计算地震作用所采用的三种计算方法为:底部剪力法,振型分解反应谱法和时程分析法。 适用条件: (1) 高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。 (2) 除上述结构以外的建筑结构,宜采用振型分解反应谱法。 (3) 特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。 (4)拟静力法的优点也很突出,它物理概念清晰,与全面考虑结构物动力相互作用的分析方法相比,计算方法较为简单,计算工作量很小、参数易于确定,并积累了丰富的使用经验,易于设计工程师所接受。 (5)但是,应该严格限定拟静力法的使用范围:它不能用于地震时土体刚度有明显降低或者产生液化的场合,而且只适用于设计加速度较小、动力相互作用不甚突出的结构抗震设计。 (6)为了克服拟静力法的上述缺陷,一些学者发展了可以部分地反映土体育结构物之间的动力耦合关系的所谓拟动力分析法。 扩展资料: 根据地震反应谱理论,以工程结构底部的总地震剪力与等效单质点的水平地震作用相等,来确定结构总地震作用的方法。 一种用静力学方法近似解决动力学问题的简易方法,它发展较早,迄今仍然被广泛使用。其基本思想是在静力计算的基础上,将地震作用简化为一个惯性力系附加在研究对象上,其核心是设计地震加速度的确定问题。 该方法能在有限程度上反映荷载的动力特性,但不能反映各种材料自身的动力特性以及结构物之间的动力响应,更不能反映结构物之间的动力耦合关系。 参考资料来源:百度百科——振型分解反应谱法

4,什么是底部剪力法

底部剪力法(拟静力法)(Equivalent Base Shear Method)

根据地震反应谱理论,以工程结构底部的总地震剪力与等效单质点的水平地震作用相等,来确定结构总地震作用的方法。

一种用静力学方法近似解决动力学问题的简易方法,它发展较早,迄今仍然被广泛使用。其基本思想是在静力计算的基础上,将地震作用简化为一个惯性力系附加在研究对象上,其核心是设计地震加速度的确定问题。
该方法能在有限程度上反映荷载的动力特性,但不能反映各种材料自身的动力特性以及结构物之间的动力响应,更不能反映结构物之间的动力耦合关系。
但是,拟静力法的优点也很突出,它物理概念清晰,与全面考虑结构物动力相互作用的分析方法相比,计算方法较为简单,计算工作量很小、参数易于确定,并积累了丰富的使用经验,易于设计工程师所接受。但是,应该严格限定拟静力法的使用范围:它不能用于地震时土体刚度有明显降低或者产生液化的场合,而且只适用于设计加速度较小、动力相互作用不甚突出的结构抗震设计。
为了克服拟静力法的上述缺陷,一些学者发展了可以部分地反映土体育结构物之间的动力耦合关系的所谓拟动力分析法。迄今为止,已经发展了不少考虑土体-结构物动力相互作用的分析方法,例如子结构法、有限元法、杂交法等。

同楼上,要计算实例自己找本结构抗震计算的教材看吧!

5,什么是振型分解反应谱法?它和底部剪力法有什么区别

行抗震规范计算地震作用所采用的三种计算方法为:底部剪力法,振型分解反应谱法和时程分析法.
适用条件:
(1) 高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算.
(2) 除上述结构以外的建筑结构,宜采用振型分解反应谱法.
(3) 特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算.

振型分解反应谱法:

也称规范法,适用于大量的工程计算,该法有侧刚及总刚两种计算方法,分别对
应侧刚模型及总刚模型,其主要区别是侧刚模型采用刚性楼板假定的简化刚度矩
阵模型。总刚模型是采用弹性楼板假定的真实结构模型转化成的刚度矩阵模型。
侧刚模型:采用刚性楼板假定的简化的刚度矩阵模型,把房屋理想化为空间梁,
柱和墙组合成的集合体,并与平面内无限刚度的楼板相互连接在一起.不管用户在
建模中有无弹性楼板,刚性楼板或越层大空间,对于无塔结构的侧刚模型假定每层
为一块刚性楼板,而多塔结构则假定为一塔一层为一块刚性楼板.侧刚模型进行振
型分析时结构动力自由度相对较少,计算耗时少,分析效率高,但应用范围有限制.
总刚模型:这是一种真实的结构模型转化成的刚度矩阵模型,结构总刚模型假定每
层非刚性楼板上的每个节点的动力自由度有两个独立水平平动自由度.可以受弹
性楼板的约束,也可以完全独立不与任何楼板相连,而在刚性楼板上的所有节点
的动力自由度只有两个独立水平平动自由度和一个独立的转动自由度.它能真
实的模拟具有弹性楼板,大开洞的错层,连体,空旷的工业厂房,体育馆等结构.
但自由度数相对比较多,计算耗时多且存储开销大.
振型分解反应谱法先计算结构的自振振型,选取若干个振型分别计算各个振型的
水平地震作用,将各振型水平地震作用于结构上,求其结构内力,最后将各振型
的内力进行组合,得到地震作用下的结构内力和变形。其基本原理就是用“规范”
反应谱,先求得各振型的对应的“最大”地震力,组合后得到结构的组合地震作用。
这里面有一个求“广义特征值”而得出结构前几阶振型和频率的重要步骤,在这个
过程中程序按力学和数学的法则进行繁多的中间计算,而不输出中间资料,仅将
结果值告知设计人。

底部剪力法:

底部剪力法(拟静力法)(Equivalent Base Shear Method) 根据地震反应谱理论,
以工程结构底部的总地震剪力与等效单质点的水平地震作用相等,来确定结构总
地震作用的方法。

一种用静力学方法近似解决动力学问题的简易方法,它发展较早,迄今仍然被广
泛使用。其基本思想是在静力计算的基础上,将地震作用简化为一个惯性力系附
加在研究对象上,其核心是设计地震加速度的确定问题。该方法能在有限程度上
反映荷载的动力特性,但不能反映各种材料自身的动力特性以及结构物之间的动
力响应,更不能反映结构物之间的动力耦合关系。但是,拟静力法的优点也很突
出,它物理概念清晰,与全面考虑结构物动力相互作用的分析方法相比,计算方
法较为简单,计算工作量很小、参数易于确定,并积累了丰富的使用经验,易于
设计工程师所接受。但是,应该严格限定拟静力法的使用范围:它不能用于地震
时土体刚度有明显降低或者产生液化的场合,而且只适用于设计加速度较小、动
力相互作用不甚突出的结构抗震设计。

6,怎样学习理工学科?

许多同学由于没有正确掌握学习方法,有的虽然知道其重要性但不得学习要领,有的则误入题海,茫茫然不知所措,导致学绩不如人意。因此在学习数学的时候,我们有必要学会如何掌握知识,掌握技能,培养能力,以及锻炼成良好的学习心理品质,把握好关键学习阶段,最终掌握学习方法进而形成综合学习的能力。 学习中主要注意的一些问题: 1、在看书的时候正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。 由于理工科是一大类知识的连贯性和逻辑性都很强的学科,正确掌握我们学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。 2、自我培养数学运算能力,养成良好的学习习惯。 每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是运用一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。 因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,这就是我们常说的既要知其然又要知其所以然,从而把握运算的方向、途径和程序,一步一步仔细完成,使得运算能力一步一步地得到提高。同学们请注意,如果你有上述类似跳步的现象应及时改正,否则,久而久知,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,结果这样就会错得越多。 3、重视知识的获取过程,培养抽象、概括分析、综合、推理证明能力。 老师上课在讲解公式、定理、概念时,一般都揭示它们的形成过程,而这个过程却又是同学们最容易忽视的,有的同学认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。 4.把握好学期初始阶段的学习。 学习贵在持之以恒,锲而不舍的精神,但同时我们注意到新学期初的学习很重要,它起到一个承上启下的重要作用。假期已经结束,新学期开始了,同学们又要投入到了新的学习生活。时间不算短的假期,同学们一定感到轻松了很多。刚开学,大家可能感到还不那么紧张,然而我们的学习却更需要从学期初抓起,抓紧期初学习很重要。 学期之初,所学内容少,作业量小,同学们常有一种轻松之感。然而此时正是我们学习的好时机。一方面知识前后是有联系的,孔子曾说:“温故而知新”,我们可以利用这段时间将以前所学相关内容温习一下,以便于更好地学习新知识。另一方面,基础稍微差一点的同学,也可以利用这段时间弥补过去学习上的不足之处,这种弥补对新知识的学习也是较为有益的。 学期之初,我们所学内容尽管少,但要真正全部消化并不容易。那我们就必须花时间去巩固,直至把所学内容全部理解为止。如此看来,尽管是学期之初,我们仍然松懈不得。 有一个良好的开端才会有一个良好的结果。 学业成绩的提高,学习方法的掌握都和同学们良好的学习习惯分不开的,因此在最后我们再一起探讨一下良好的学习习惯。 良好的学习习惯包括:听讲、阅读、思考、作业。 听讲:应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。 阅读:阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维。 思考:学会思考,在问题解决之后再探求一些新的方法,学着从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律。 作业:要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学。 总之,在学习的过程中,我们要认识到学习的重要性,充分发挥自己的主观能动性,从小的细节注意起,养成良好的学习习惯,以培养思考问题、分析问题和解决问题的能力。 ! 麻烦采纳,谢谢!

7,理工学科是什么

  理工学科是指理学和工学两大学科。理工,是一个广大的领域包含物理、化学、生物、工程、天文、数学及前面六大类的各种运用与组合。
  理学
  理学是中国大学教育中重要的一支学科,是指研究自然物质运动基本规律的科学,大学理科毕业后通常即成为理学士。与文学、工学、教育学、历史学等并列,组成了我国的高等教育学科体系。
  理学研究的内容广泛,本科专业通常有:数学与应用数学、信息与计算科学、物理学、应用物理学、化学、应用化学、生物科学、生物技术、天文学、地质学、地球化学、地理科学、资源环境与城乡规划管理、地理信息系统、地球物理学、大气科学、应用气象学、海洋科学、海洋技术、理论与应用力学、光学、材料物理、材料化学、环境科学、生态学、心理学、应用心理学、统计学等。

  工学
  工学是指工程学科的总称。包含 仪器仪表 能源动力 电气信息 交通运输 海洋工程 轻工纺织 航空航天 力学生物工程 农业工程 林业工程 公安技术 植物生产 地矿 材料 机械 食品 武器 土建 水利测绘 环境与安全 化工与制药 等专业。

8,在抗震计算中,什么是振型分解反应谱法?在何种条件下,振型分解反应谱法可以简化为底部剪力法,为什么?

振型分解反应谱法可以考虑多阶振型互相耦合的作用,尤其是扭转振型的耦联,如果只是单阶振型,则振型分解反应谱法和底部剪力法应该是一致的。
所以底部剪力法一般用在低层的、简单的、规则的、对称的结构中,如砌体结构住宅楼或者多层框架(新规范要求加上楼梯就又麻烦了)之类。
此外,振型分解反应谱法计算出来的地震剪力都是绝对值,没有方向,在这一点上,底部剪力法算出不同方向地震作用所引起的剪力的方向,比较有物理意义。

振型分解反应谱法:
也称规范法,适用于大量的工程计算,该法有侧刚及总刚两种计算方法,分别对应侧刚模型及总刚模型,其主要区别是侧刚模型采用刚性楼板假定的简化刚度矩阵模型。总刚模型是采用弹性楼板假定的真实结构模型转化成的刚度矩阵模型。
振型分解反应谱法先计算结构的自振振型,选取若干个振型分别计算各个振型的水平地震作用,将各振型水平地震作用于结构上,求其结构内力,最后将各振型的内力进行组合,得到地震作用下的结构内力和变形。其基本原理就是用“规范”反应谱,先求得各振型的对应的“最大”地震力,组合后得到结构的组合地震作用。这里面有一个求“广义特征值”而得出结构前几阶振型和频率的重要步骤,在这个过程中程序按力学和数学的法则进行繁多的中间计算,而不输出中间资料,仅将结果值告知设计人。

底部剪力法:
底部剪力法(拟静力法)(Equivalent Base Shear Method) 根据地震反应谱理论,以工程结构底部的总地震剪力与等效单质点的水平地震作用相等,来确定结构总地震作用的方法。
一种用静力学方法近似解决动力学问题的简易方法,它发展较早,迄今仍然被广泛使用。其基本思想是在静力计算的基础上,将地震作用简化为一个惯性力系附加在研究对象上,其核心是设计地震加速度的确定问题。该方法能在有限程度上反映荷载的动力特性,但不能反映各种材料自身的动力特性以及结构物之间的动力响应,更不能反映结构物之间的动力耦合关系。但是,拟静力法的优点也很突出,它物理概念清晰,与全面考虑结构物动力相互作用的分析方法相比,计算方法较为简单,计算工作量很小、参数易于确定,并积累了丰富的使用经验,易于设计工程师所接受。但是,应该严格限定拟静力法的使用范围:它不能用于地震时土体刚度有明显降低或者产生液化的场合,而且只适用于设计加速度较小、动力相互作用不甚突出的结构抗震设计。